Lower bounds of L^1 -norms of non-harmonic trigonometric polynomials

Philippe Jaming

In this talk, we will present quantitative lower bounds of the L^1 norm of a non-harmonic trigonometric polynomial of the following form:

- let T > 1;

- let $(\lambda_j)_{j\geq 0}$ be a sequence of non-negative real numbers with $\lambda_{j+1} - \lambda_j \geq 1$;

 $- \operatorname{let} (a_j)_{j=0,\dots,N}$ be a finite sequence of complex numbers. Then

$$C(T)\sum_{j=0}^{N} \frac{|a_j|}{j+1} \le \frac{1}{T} \int_{-T/2}^{T/2} \left| \sum_{j=0}^{N} a_j e^{2i\pi\lambda_j t} \right| \, \mathrm{d}t$$

where C(T) is an explicit constant that depends on T only. This provides a quantitative statement of a result by F. Nazarov.

The L^2 analogue is Ingham's Inequality and the harmonic case (λ_j integers) is McGehee, Pigno, Smith's solution of the Littlewood conjecture.