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Introduction

In this talk we consider linear spaces.

An automorphism of a linear space L is a type- and
incidence-preserving bijection on L.

The set of automorphisms of L forms a group under composition,
called the automorphism group of L, and is denoted by Aut(L).

A flag of L is an incident point-line pair (x , ℓ).

Question: For which linear spaces L does Aut(L) act transitively
on flags?
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Linear spaces

Question: When is Aut(L) flag-transitive?

Due to work by Buekenhout, Delandtsheer, Doyen et al. (1990),
Liebeck (1998), Saxl (2002) and others, the result is known for all
L and Aut(L) except when L is constructed from a t-spread of
V (n, q) and Aut(L) is T ◦ G0, where G0 is a subgroup of
ΓL(1, qn) ≤ ΓL(n, q).

Pauley and Bamberg (2007) studied the case t = 2 and
G0 = C :=

〈
ωq+1

〉
≤ ΓL(1, q2m), where ω is a generator of F×

q2m
.
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Line-spreads

Let P(x) be an irreducible polynomial over Fq2 of degree m. Then
P(x) satisfies ⋆ if and only if for all nonzero x , y ∈ Fq2 we have

xmP(xq−1)

ymP(yq−1)
∈ Fq =⇒ x

y
∈ Fq.

Theorem (Pauley-Bamberg, 2007)

Polynomials
satisfying ⋆

←−−−−−−−−−−→ Flag-transitive linear spaces
with the given aut. group
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Known examples

• Kantor (1993): P(x) = xm − ζ, where ζ is a generator of F×
q2
.

• Pauley and Bamberg (2007): PB(x) = xp+1−1
x−1 − 2 where p is

an odd prime.

• Feng and Lu (2021):

FLn(x) :=
(δx − 1)n − δ(x − δ)n

δn − δ

where d > 1 is an odd divisor of q + 1, u is a proper divisor of
d , t ∈ N+, n = d tu and δ ∈ F×

q2
is an element of order q + 1.



Permutation polynomials (I)

Theorem (Feng-Lu, 2021)

Suppose (deg(P), q − 1) = 1. Then P(x) satisfies ⋆ if and only if
xdP(xq−1) permutes Fq2 .

Note that:

• Reducible P(x) is interesting for permutation polynomials, but
not for linear spaces.

• The case (deg(P), q − 1) > 1 is interesting for linear spaces,
but not for permutation polynomials (since in that case
xdP(xq−1) can never permute Fq2).
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An equivalent critieron

Let P(x) =
∑m

i=0 aix
i ∈ Fq2 [x ], and define P̃(x) :=

∑m
i=0 a

q
m−ix

i .

We define a polynomial in two variables as follows.

HP(z ,w) :=
P(z)P̃(w)− P̃(z)P(w)

z − w
.

Lemma
A polynomial P(x) satisfies ⋆ ⇐⇒ the system HP(z ,w) = 0,
zq+1 = wq+1 = 1 has no solutions with z ̸= w.
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Binomials and quadratics

Theorem (binomials)

The polynomial P(x) = xm − θ is irreducible in Fq2 [x ] and satisfies
⋆ if and only if the following hold:

(i) θq+1 ̸= 1;

(ii) every prime factor of m divides o(θ) but not q2−1
o(θ) ;

(iii) if m ≡ 0 mod 4 then q ≡ 1 mod 4;

(iv) (m, q + 1) = 1.

In particular, if m = 3 then there exists an irreducible cubic
binomial satisfying ⋆ if and only if q ≡ 1 mod 3.

We also calculated the equivalence classes of binomials for
arbitrary degree.

Theorem (quadratics)

There are no quadratics satisfying ⋆.
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Cubics

Example (m = 3)

Let P(x) = x3 − δx2 − (δ + 3)x − 1. Then

HP(z ,w) = (zw + z + 1)(zw + w + 1).

Suppose zw + z + 1 = 0 ⇐⇒ z = −1
w+1 . Then

zq+1 = 1 = wq+1

⇐⇒ wq+1 + wq + w = 0

⇐⇒ w2 + w + 1 = 0

⇐⇒ z = w .

Hence P(x) satisfies ⋆.



Cubics

Example (m = 3)

Let P(x) = x3 − δx2 − (δ + 3)x − 1. Then

HP(z ,w) = (zw + z + 1)(zw + w + 1).

Suppose zw + z + 1 = 0 ⇐⇒ z = −1
w+1 .

Then

zq+1 = 1 = wq+1

⇐⇒ wq+1 + wq + w = 0

⇐⇒ w2 + w + 1 = 0

⇐⇒ z = w .

Hence P(x) satisfies ⋆.



Cubics

Example (m = 3)

Let P(x) = x3 − δx2 − (δ + 3)x − 1. Then

HP(z ,w) = (zw + z + 1)(zw + w + 1).

Suppose zw + z + 1 = 0 ⇐⇒ z = −1
w+1 . Then

zq+1 = 1 = wq+1

⇐⇒ wq+1 + wq + w = 0

⇐⇒ w2 + w + 1 = 0

⇐⇒ z = w .

Hence P(x) satisfies ⋆.



Cubics

Example (m = 3)

Let P(x) = x3 − δx2 − (δ + 3)x − 1. Then

HP(z ,w) = (zw + z + 1)(zw + w + 1).

Suppose zw + z + 1 = 0 ⇐⇒ z = −1
w+1 . Then

zq+1 = 1 = wq+1

⇐⇒ wq+1 + wq + w = 0

⇐⇒ w2 + w + 1 = 0

⇐⇒ z = w .

Hence P(x) satisfies ⋆.



Cubics

Theorem
Let P(x) = x3 − δx2 − γx − θ ∈ Fq2 [x ]. Then HP(z ,w) is
reducible (and not identically zero) if and only if one of the
following holds:

(i) P(x) = Bθ(x) := x3 − θ, θq+1 ̸= 1;

(ii) P(x) = Pδ,α(x) := x3 − δx2 − (δα+3α1−q)x − (δα2
(

1−α−(q+1)

3

)
+α2−q),

α ̸= 0;

(iii) P(x) = Qδ,γ(x) := x3 − δx2 − γx + δγ/9, γq+1 = 9.

Furthermore

• an irreducible Bθ(x) satisfies ⋆ if and only if q ≡ 1 mod 3;

• an irreducible Pδ,α(x) satisfies ⋆ if and only if 4−αq+1

3αq+1 is a
nonzero square in Fq, and δ = 0 or (α+ 3δ−q)q+1 ̸= 1;

• an irreducible Qδ,γ(x) satisfies ⋆ if and only if γ
q+1
2 = 3.



Permutation polynomials (II)

In their work on characterising permutation polynomials of Fq2 of
the form

fa,b(X ) = X (1 + aX q(q−1) + bX 2(q−1)),

Bartoli and Timpanella (2021) considered a curve with affine
equation

−bq+1HP(z ,w) = 0

where P(x) = x3 + b−1x + ab−1. They showed that fa,b(X ) is a
PP if and only if P satisfies ⋆. It follows that P(x) is of the form
Pδ,α(x) with δ = 0, a = α/3 and b = −αq−1/3.

Following their approach, we showed that for q ≥ 47, if P satisfies
⋆ then HP is reducible.
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Equivalence

Theorem (Pauley-Bamberg, 2007)

Let P(x),Q(x) ∈ Fq2 [x ] satisfy ⋆. Then P and Q yield equivalent
linear spaces if and only if

P(x) = λ(u + vqx)mQσ

(
v + uqx

u + vqx

)
for some σ ∈ Aut(Fq2m) and u, v , λ ∈ Fq2 where λ ̸= 0 and
uq+1 ̸= vq+1.



Cubic equivalence

Theorem
Let P(x) be an irreducible polynomial of the form Bθ(x), Pδ,α(x) or
Qδ,γ(x) that satisfies ⋆. Then P(x) is equivalent to some Pδ′,1(x).

By counting the number of irreducibles of the form Pδ,1(x), and
calculating precisely the equivalences between polynomials of this
form, we get the following.

Theorem
The number of equivalence classes of irreducible cubic polynomials
satisfying ⋆ such that HP(z ,w) is reducible is precisely{

q−1
3 , if q ≡ 1 mod 3

q+1
3 , if q ̸≡ 1 mod 3

.
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A surprising connection

Lemma
P(x) divides HP(x

q2 , x).

For each of our cubic orbit representatives Pδ,1(x) we have

HPδ,1
(z ,w) = (zw + z + 1)(zw + w + 1),

and so Pδ,1(x) divides (x
q2+1 + xq

2
+ 1)(xq

2+1 + x + 1).

Conversely, methods of Stichtenoth-Topuzoğlu (2012) and
Gow-McGuire (2021) tells us that every irreducible cubic factor of
(xq

2+1 + xq
2
+ 1)(xq

2+1 + x + 1) ∈ Fq2 [x ] is of the form

Pδ,1(x) = x3 − δx2 − (δ + 3)x − 1.

We aim to explain and expand this connection to find polynomials
of other degrees satisfying ⋆.
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Orbit polynomials

Lemma
P(x) divides HP(x

q2 , x).

For Ψ =

(
−b −d
c a

)
∈ GL(2, q2), let

HΨ(z ,w) = czw + az + bw + d .

We consider the case in which HP(z ,w) =
∏

ΨHΨ(z ,w).

There has much study of the factorisation of

FΨ(x) := HΨ(x
q2 , x) = cxq

2+1 + axq
2
+ bx + d .

If P(x) | FΨ(x) and Q(x) | FΦ(x) then P and Q are equivalent if
and only if FΨ and FΦ are equivalent.
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Orbit polynomials

FΨ(x) := HΨ(x
q2 , x) = cxq

2+1 + axq
2
+ bx + d

The number of factors of FΨ and their degrees were determined by
Stichtenoth and Topuzoğlu (2011).
Further work was carried out by Gow and McGuire (2022) using
results on group actions and orbit polynomials.

For Ψ ∈ GL(2, q2), let [Ψ] denote the corresponding element of
PGL(2, q2).

For s = [Ψ] =

[(
−b −d
c a

)]
, define s(x) = −bx+d

cx+a .

The orbit polynomial of the group G generated by s is

OG (x) =
∏
s∈G

(x − s(y)) ∈ Fq2(y)[x ].
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Orbit polynomials

FΨ(x) := HΨ(x
q2 , x) = cxq

2+1 + axq
2
+ bx + d

The orbit polynomial of the group G generated by s = [Ψ] is

OG (x) =
∏
s∈G

(x − s(y)) ∈ Fq2(y)[x ].

Gow-McGuire (2022)

Let |G | =: r divide q2 + 1. Then the irreducible factors of FΨ(x)
have degree r and each irreducible factor is a specialisation of the
orbit polynomial OG (x).



Orbit polynomials

Example

Let Ψ =

(
−1 −1
1 0

)
, so FΨ(x) = xq

2+1 + x + 1 and the order of

s = [Ψ] is 3.

Then

OG (x) = (x − y)(x − s(y))(x − s2(y))

= (x − y)

(
x +

y + 1

y

)(
x +

1

y + 1

)
= x3 +

(
1 + 3y − y3

y(y + 1)

)
x2 +

(
1− 3y2 − y3

y(y + 1)

)
x − 1

= Pδ,1(x),

where δ = 1+3y−y3

y(y+1) .
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Remarks

Pauley-Bamberg

Let PB(x) = xp+1−1
x−1 − 2, where p is an odd prime.

Let

M =

{(
(1 + i)/i −1

1 (1− i)/i

)
: i ∈ F∗

p

}
.

Then the elements of M have order p and PB(x) is a factor of
FΨ(x) for some Ψ ∈ M.

Furthermore, all polynomials that are specialisations of an orbit
polynomial OG , where |G | = p, are equivalent.
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satisfies ⋆, where d > 1 is an odd divisor of q + 1, u is a proper
divisor of d , t ∈ N+, n = d tu and δ ∈ F×

q2
is an element of order

q + 1.

We have
FL3(x) = P0,−(δ+δ−1)(x) ∈ Fq[x ].

Not every irreducible cubic satisfying ⋆ is equivalent to one of the
form FL3(x), and so this construction is a proper subset of ours for
the case m = 3.
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Remarks

Feng-Lu

Let FLn(x) =
(δx−1)n−δ(x−δ)n

δn−δ , where d > 1 is an odd divisor of

q + 1, u is a proper divisor of d , t ∈ N+, n = d tu and δ ∈ F×
q2

is
an element of order q + 1.

Let Cn =

{(
λδq − δ 1− λ
λ− 1 δq − λδ

)
: λn = 1,

}
. Then

HFLn(z ,w) =
∏

Ψ∈Cn\{I}

HΨ(z ,w)

and
FLn(x) =

∏
Ψ∈Cn

(x − [Ψ](y))

for some y .

For different choices of y we obtain new examples
inequivalent to FLn(x).
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: λn = 1,

}
. Then

HFLn(z ,w) =
∏

Ψ∈Cn\{I}

HΨ(z ,w)

and
FLn(x) =

∏
Ψ∈Cn

(x − [Ψ](y))

for some y . For different choices of y we obtain new examples
inequivalent to FLn(x).



Quartics

Theorem
If P(x) is an irreducible quartic satisfying ⋆, then HP is absolutely
irreducible.

From Magma computation:

• there are irreducible quartic polynomials satisfying ⋆ for every
q < 9. For each of these polynomials P, HP is absolutely
irreducible (which never occurs in the cubic case).

• there are no irreducible quartic polynomials satisfying ⋆ for
9 ≤ q ≤ 23.

Following the method of Bartoli-Timpanella in using the
Aubry-Perret bound on curves, we can conclude there are no
quartics satisfying ⋆ for q > 409.
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Summary

In summary:

• We can explain the known examples using a common
approach.

• We can use this to extend the known families to new
inequivalent examples of the same degree.

Preprint: Cyclic 2-Spreads in V (6, q) and Flag-Transitive Affine
Linear Spaces (arXiv:2309.06872)
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Thank you for your attention!


