Introduction to Modern Cryptography

Anmoal Porwal

Technical University of Munich

20 September 2023 Finite Geometry and Friends, Brussels

Reference

J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca Raton: CRC Press, 2021.

Background: Private-Key Encryption

Both parties share a common key k

Historically...

• first rigorous definition of security was given by Shannon in 1949 called "perfect secrecy"

Historically...

- first rigorous definition of security was given by Shannon in 1949 called "perfect secrecy"
- however this definition had serious limitations

Historically...

- first rigorous definition of security was given by Shannon in 1949 called "perfect secrecy"
- however this definition had serious limitations
- these were finally overcome in the 1980s with the definition of semantic security

Modern Definition of Security

What was wrong with perfect secrecy?

Modern Definition of Security

What was wrong with perfect secrecy?

adversary has unbounded computing power

Modern Definition of Security

What was wrong with perfect secrecy?

- adversary has unbounded computing power
- requires zero leak of information

A scheme is **secure** if all efficient adversaries succeed in breaking the scheme with small probability.

efficient adversary

- efficient adversary
 - \rightarrow probabilistic polynomial-time (PPT) algorithm

- efficient adversary
 - \rightarrow probabilistic polynomial-time (PPT) algorithm
- small probability

- efficient adversary
 - → probabilistic polynomial-time (PPT) algorithm
- small probability
 - \rightarrow negligible probability (e.g. 2^{-n})

- efficient adversary
 - → probabilistic polynomial-time (PPT) algorithm
- small probability
 - \rightarrow negligible probability (e.g. 2^{-n})

note: all our algorithms will have a parameter n (think of it as the key length)

A scheme is **secure** if all efficient algorithms succeed in breaking the scheme with small probability.

A scheme is **secure** if all PPT algorithms succeed in breaking the scheme with negligible probability.

A scheme is **secure** if for every PPT algorithm \mathcal{A} ,

$$\mathbb{P}[\mathcal{A}(\operatorname{Enc}_k(m)) = m] \le \operatorname{negl}(n)$$

A scheme is **secure** if for every PPT algorithm \mathcal{A} ,

$$\mathbb{P}[\mathcal{A}(\operatorname{Enc}_k(m)) = m] \le \operatorname{negl}(n)$$

A scheme is **secure** if for every PPT algorithm \mathcal{A} , and for all i,

$$\mathbb{P}[\mathcal{A}(\operatorname{Enc}_k(m)) = \operatorname{bit} i \operatorname{of} m] \leq \operatorname{negl}(n)$$

A scheme is **secure** if for every PPT algorithm \mathcal{A} , and for all i,

$$\mathbb{P}[\mathcal{A}(\operatorname{Enc}_k(m)) = \operatorname{bit} i \operatorname{of} m] \leq \operatorname{negl}(n)$$

A scheme is **secure** if for every PPT algorithm \mathcal{A} , and for all functions f,

$$\mathbb{P}[\mathcal{A}(\operatorname{Enc}_k(m)) = f(m)] \le \operatorname{negl}(n)$$

A scheme is **secure** if for every PPT algorithm \mathcal{A} , and for all functions f,

$$\mathbb{P}[\mathcal{A}(\operatorname{Enc}_k(m)) = f(m)] \le \operatorname{negl}(n)$$

A scheme is **secure** if for every PPT algorithm \mathcal{A} ,

A scheme is **secure** if for every PPT algorithm \mathcal{A} , ... there is another PPT algorithm \mathcal{A}' ,

A scheme is **secure** if for every PPT algorithm \mathcal{A} , ... there is another PPT algorithm \mathcal{A}' , ... such that for all (efficiently sampleable) message distributions

A scheme is **secure** if for every PPT algorithm \mathcal{A} , ... there is another PPT algorithm \mathcal{A}' , ... such that for all (efficiently sampleable) message distributions ... and all (polynomial-time computable) functions f and h,

A scheme is **secure** if for every PPT algorithm \mathcal{A} ,

... there is another PPT algorithm \mathcal{A}' ,

... such that for all (efficiently sampleable) message distributions

... and all (polynomial-time computable) functions f and h,

$$|\mathbb{P}[\mathcal{A}(\operatorname{Enc}_k(m), h(m)) = f(m)] - \mathbb{P}[\mathcal{A}'(h(m)) = f(m)]|$$

is negligible

A scheme is **secure** if for every PPT algorithm \mathcal{A} ,

... there is another PPT algorithm \mathcal{A}' ,

... such that for all (efficiently sampleable) message distributions

 \dots and all (polynomial-time computable) functions f and h,

$$|\mathbb{P}[\mathcal{A}(\operatorname{Enc}_k(m), h(m)) = f(m)] - \mathbb{P}[\mathcal{A}'(h(m)) = f(m)]|$$

is negligible

a simpler but equivalent definition exists

a simpler but equivalent definition exists define the experiment:

- a simpler but equivalent definition exists define the experiment:
 - 1. the algorithm \mathcal{A} outputs two (distinct) messages m_0 , m_1

- a simpler but equivalent definition exists define the experiment:
 - 1. the algorithm \mathcal{A} outputs two (distinct) messages m_0 , m_1
 - 2. the challenger encrypts one of the messages and gives it to $\mathcal A$

Indistinguishability

- a simpler but equivalent definition exists define the experiment:
 - 1. the algorithm \mathcal{A} outputs two (distinct) messages m_0 , m_1
 - 2. the challenger encrypts one of the messages and gives it to \mathcal{A}
 - 3. \mathcal{A} outputs a guess which message was encrypted

Indistinguishability

- a simpler but equivalent definition exists define the experiment:
 - 1. the algorithm \mathcal{A} outputs two (distinct) messages m_0 , m_1
 - 2. the challenger encrypts one of the messages and gives it to \mathcal{A}
 - 3. \mathcal{A} outputs a guess which message was encrypted
 - 4. success if guess is correct

Indistinguishability

- a simpler but equivalent definition exists define the experiment:
 - 1. the algorithm \mathcal{A} outputs two (distinct) messages m_0 , m_1
 - 2. the challenger encrypts one of the messages and gives it to $\mathcal A$
 - 3. $\mathcal A$ outputs a guess which message was encrypted
 - 4. success if guess is correct
- ▶ A scheme is **secure** if every PPT algorithm \mathcal{A} succeeds with probability at most $\frac{1}{2} + \text{negl}(n)$

currently we cannot unconditionally prove any scheme to be secure

- currently we cannot unconditionally prove any scheme to be secure
- but it is possible to prove security based on *weaker* assumptions

- currently we cannot unconditionally prove any scheme to be secure
- but it is possible to prove security based on weaker assumptions
- e.g. we construct provably secure private-key schemes from just one-way functions

- currently we cannot unconditionally prove any scheme to be secure
- but it is possible to prove security based on weaker assumptions
- e.g. we construct provably secure private-key schemes from just one-way functions
- however the schemes in use today generally rely on more stronger assumptions since that yields more efficient schemes

stronger security notions: CPA, CCA, ...

- stronger security notions: CPA, CCA, ...
- other schemes: authentication, public-key encryption, digital signatures

- stronger security notions: CPA, CCA, ...
- other schemes: authentication, public-key encryption, digital signatures

- stronger security notions: CPA, CCA, ...
- other schemes: authentication, public-key encryption, digital signatures

Thank you!