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MOTIVATION
» Introduced by Gabidulin and Simonis (1997)

> A generalization of many metrics in coding theory

> Related to (projective) finite geometry, combinatorics, matroids, graph theory, etc.

» Potential applications for the theory of coset leaders, code-based cryptography

» Elementary, but it’s possibly a new perspective on known familiar concepts

» Sweet-spot for research on metrics?
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Stongly regular Clebsch graph / Greenwood—Gleason graph

s
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Vertices: vectors of 3
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Distance from 0000 to 1101: red: 3, blue: 2

110

< ./

1010 &Qm 1/0
/

0010

/
.
1100 / //

1000 1001\ \
0100 \/0101

0000 0001

HUGO SAUERBIER COUVEE (TUM) PROJECTIVE METRICS



Graph distance on Clebsch graph = Phase-rotation metric/distance on 5
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Graph distance on Clebsch graph = Phase-rotation metric/distance on 5
An edge is a Hamming error or the all-bits-flip error
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Hamming metric
(0 1 00 10 1) — WtHamming = 3
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Hamming metric
(O 1 00 10 1) — WtHamming = 3

Rank metric
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Sum-Rank metric
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Hamming metric
(O 1 00 10 1) — WtHamming = 3

Rank metric
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1 10 — WtRank = 3
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1 1 0/00O0|1 01 — Wisumorank =3 +1+2=6
11 1{01 0[0 0 O
Cover metric (rows and columns)
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01011
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Hamming metric

(010010 1)

Rank metric

Sum-Rank metric
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Phase-rotation metric

(1101)=(1111)+(0010)
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Hamming metric
(O 1 00 10 1) — WtHamming = 3

Rank metric

010
1 10 — WtRank =3
111
Sum-Rank metric
01 0/01O0(f1 01
11 0/00 0{1 01 — Wtsumorank =3 +1+2=06
11 1/010[0 00
Cover metric (rows and columns)
01000
01011
01000 — Weowa=3
10010

Phase-rotation metric

More: burst metric, tensor metric, combinatorical metrics, etc.
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for some weight function wt(-) : V.— N>.
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Let V be a vector space over finite field Fy.

Translation invariant metric/distance function d(-, -) on V satisfies

d(x,y) =d(0,y — x) = wt(y — x)

for some weight function wt(-) : V.— N>.

Definition
A translation invariant metric is projective iff for every x € V:

wt(x) = min{t € N>¢ | x is an F;-linear combination of ¢ vectors of weight 1}

The set of 1-dim subspaces (projective points)

F={{ [ fieV,wt(fi) =1}

is called the spanning family.
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Other direction:

Let F be a set of 1-dim subspaces (projective points)
F={{h) (fads-- s ()}

such that <f1,f2, e 7fN> =V.
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Other direction:

Let F be a set of 1-dim subspaces (projective points)

F={{) (fa)s--os ()}
such that <f1,f2, e ,fN> =V.

The projective weight function wtr(-) : V — N> corresponding to F is

wtr(x) := min{t € N>¢ | x is in the linear span of t projective points (f;) € F}

HUGO SAUERBIER COUVEE (TUM) PROJECTIVE METRICS
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Other direction:

Let F be a set of 1-dim subspaces (projective points)

F={{) (fa)s--os ()}
such that <f1,f2, e ,fN> =V.

The projective weight function wtr(-) : V — N> corresponding to F is

wtr(x) := min{t € N>¢ | x is in the linear span of t projective points (f;) € F}

The projective metricdr(-,-) : V x V — Nx( corresponding to F is

dr(x,y) == wtr(y — x).
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Hamming metric

(010010 1)
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Hamming metric
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— F = {spans of standard basis vectors}
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Hamming metric

(0100

Rank metric

—_
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Hamming metric
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Hamming metric

(01 0010 1) — F={spansofstandard basis vectors}

Rank metric

N
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) — F = {spans of rank 1 matrices}

Sum-Rank metric
01 0/010(1 01
11 0/00 01 01
11 1/01 0/0 00
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Hamming metric

(01 0010 1) — F={spansofstandard basis vectors}

Rank metric

N
_ - o
— e
_ o O

) — F = {spans of rank 1 matrices}

Sum-Rank metric

01 0(01 0|1 01
110/000/101 — F = {spans of ( some 0 blocks | rank 1 matrix | some 0 blocks ) }
1 11/010(0 00
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Hamming metric
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Hamming metric
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Hamming metric

(01 0010 1) — F={spansofstandard basis vectors}

Rank metric

010
110 — F = {spans of rank 1 matrices}
111
Sum-Rank metric
01 0{010|1 01
110/000/101 — F = {spans of ( some 0 blocks | rank 1 matrix | some 0 blocks ) }
11 1/010(000
Cover metric (rows and columns)
01000
01011 . .
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10010

Phase-rotation metric
(1101)=(1111)+(0010)

HUGO SAUERBIER COUVEE (TUM) PROJECTIVE METRICS



Hamming metric

(01 0010 1) — F={spansofstandard basis vectors}

Rank metric

010
110 — F = {spans of rank 1 matrices}
111
Sum-Rank metric
01 0{010|1 01
110/000/101 — F = {spans of ( some 0 blocks | rank 1 matrix | some 0 blocks ) }
11 1/010(000
Cover metric (rows and columns)
01000
01011 . .
0100 0 — F = {spans of matrices with 1 non-zero row or 1 non-zero column}
10010

Phase-rotation metric

(1101)=(1111)+(0 0 1 0) — F={spansofstandard basis vectors or all-1}
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® wtr(v) is cardinality of smallest subset of 7 whose closure contains v.
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Equivalent notions of wt(-) in different contexts:

» Coding theory:
Certain code C (depends on F);  wtr(v) is Hamming weight of the coset (v + C).

» Graph theory:
Cayley graph of Fy with generating set 7;  wtr(v) is graph distance between v and 0.

> Projective geometry:
Flats spanned by points in 7; wtz(v) is smallest rank of such a flat that contains v.

» Matroids:

® wtr(v) is cardinality of smallest subset of 7 whose closure contains v.
® View F as ground set of representable matroid, study dependent and independent sets.
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Equivalent notions of wt(-) in different contexts:

» Coding theory:
Certain code C (depends on F);  wtr(v) is Hamming weight of the coset (v + C).

» Graph theory:
Cayley graph of Fy with generating set 7;  wtr(v) is graph distance between v and 0.

> Projective geometry:
Flats spanned by points in 7; wtz(v) is smallest rank of such a flat that contains v.

» Matroids:
® wtr(v) is cardinality of smallest subset of 7 whose closure contains v.

® View F as ground set of representable matroid, study dependent and independent sets.

Q: General ways to calculate wt z(v)?
Q: For fixed t, how many v have wtz(v) = t?
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Equivalent notions of wt(-) in different contexts:

>

HUGO SAUE

Coding theory:
Certain code C (depends on F);  wtr(v) is Hamming weight of the coset (v + C).

Graph theory:
Cayley graph of Fy with generating set 7;  wtr(v) is graph distance between v and 0.

Projective geometry:
Flats spanned by points in 7; wtz(v) is smallest rank of such a flat that contains v.

Matroids:
® wtr(v) is cardinality of smallest subset of 7 whose closure contains v.

® View F as ground set of representable matroid, study dependent and independent sets.

Q: General ways to calculate wt z(v)?
Q: For fixed t, how many v have wtz(v) = t?

Please let me know if you know a (partial) answer in any of these contexts! :)
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Definition

Lett € {0,1,2,...,n}. We define pr(t) as the maximum cardinality of a subset G C F satisfying

1. Allf; € G are linear independent from each other over Fy;
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WHAT CAN WE DO?

Singleton-type bound!

Let V be an n-dim vector space over FF;. Let 7 be a spanning family for a projective metric.
Definition

Lett € {0,1,2,...,n}. We define pr(t) as the maximum cardinality of a subset G C F satisfying

1. Allf; € G are linear independent from each other over Fy;
2. Allv € (G) have wtr(v) < t.

Theorem (General Singleton-type bound)
(S.202?) Let C C V be a subset and let d = min{dr(x,y) |x #y € C)}. Then

|C| < qn—,u]:(d—l) < qn—d+1
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WHAT CAN WE DO?

Singleton-type bound!

Let V be an n-dim vector space over FF;. Let 7 be a spanning family for a projective metric.
Definition

Lett € {0,1,2,...,n}. We define pr(t) as the maximum cardinality of a subset G C F satisfying

1. Allf; € G are linear independent from each other over Fy;
2. Allv € (G) have wtr(v) < t.

Theorem (General Singleton-type bound)
(S.202?) Let C C V be a subset and let d = min{dr(x,y) |x #y € C)}. Then

|C| S qn—,u}-(d—l) S qn—d+1

Coincides with Singleton bounds for specific projective metrics!
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WHAT CAN WE DO?
Constructions/operations!

We can define
wtrUwtg := wtryug

and
wtr @ wtg := wtrgg

where F® G = {{fi) @ (gi) | {fi) € F, (gi) € G}
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WHAT CAN WE DO?
Constructions/operations!

We can define
wtrUwtg := wtryug

and
wtr @ wtg := wtrgg

where F ® G := {{f;) ® (g;) | {fi) € F, (gi) € G}

Example
Let 7 = {all 1-dim subspaces of V}. Then wtz(x) = 1 for all x # 0. This is the discrete weight wtp;s.
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WHAT CAN WE DO?
Constructions/operations!

We can define
wtrUwtg := wtryug

and
wtr @ wtg := wtrgg

where F ® G := {{f;) ® (g;) | {fi) € F, (gi) € G}

Example
Let 7 = {all 1-dim subspaces of V}. Then wtz(x) = 1 for all x # 0. This is the discrete weight wtp;s.

Examples
> Wtpis ® Wtpis = WtRrank
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WHAT CAN WE DO?
Constructions/operations!

We can define
wtrUwtg := wtryug

and
wtr @ wtg := wtrgg

where F ® G := {{f;) ® (g;) | {fi) € F, (gi) € G}

Example
Let 7 = {all 1-dim subspaces of V}. Then wtz(x) = 1 for all x # 0. This is the discrete weight wtp;s.

Examples
> Wipis ® Wtpis = WiRank
» Wty ® WtRank = WtSum-rank
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WHAT CAN WE DO?
Constructions/operations!

We can define
wtrUwtg := wtryug

and

wtr @ wtg := wtrgg
where F® G := {(fi) ® (g:) | {fi) € F, (81) € G}

Example
Let 7 = {all 1-dim subspaces of V}. Then wtz(x) = 1 for all x # 0. This is the discrete weight wtp;s.

Examples
> Wipis @ Wtpis = WtRank
» Wt @ WtRank = WiSum-rank
> Wipis @ WtH = WtRow
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WHAT CAN WE DO?
Constructions/operations!

We can define
wtrUwtg := wtryug

and

wtr @ wtg := wtrgg
where F® G := {(fi) ® (g:) | {fi) € F, (81) € G}

Example
Let 7 = {all 1-dim subspaces of V}. Then wtz(x) = 1 for all x # 0. This is the discrete weight wtp;s.

Examples
» Wtpis ® Wtpis = WtRank
> Wty ®@ WtRank = WlSum-rank
> Wtpis ® Wty = WtRow
» wtg ® Wtpis = Wtcolumn
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WHAT CAN WE DO?
Constructions/operations!

We can define
wtrUwtg := wtryug

and

wtr @ wtg := wtrgg
where F® G := {(fi) ® (g:) | {fi) € F, (81) € G}

Example
Let 7 = {all 1-dim subspaces of V}. Then wtz(x) = 1 for all x # 0. This is the discrete weight wtp;s.

Examples

> Wtpis ® Wipis = WiRank
wtg ® WtRank = WiSum-rank
WiDis @ Wit = WiRow
wtH ® Wtpis = WhColumn
WtRow U WtColumn = WtCover

vVvyyy
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CURRENT RESEARCH
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CURRENT RESEARCH
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» Are there general methods for calculating wt z(v) forv € V?
> Are there general methods for obtaining sphere sizes |{v € V| wtz(v) = t}| for t € N?
» Approach?: using poset lattice of projective metrics, where wtr < wtg iff ¥ C G

WtDis

wtr

WiF\{o;}  WEF\{oy} WEE oy}
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CURRENT RESEARCH

» Are there general methods for calculating wt z(v) forv € V?
> Are there general methods for obtaining sphere sizes |{v € V| wtz(v) = t}| for t € N?
» Approach?: using poset lattice of projective metrics, where wtr < wtg iff ¥ C G

WtDis

wtr

WEF\fm}  WER\{e} WEF\{fon}
Ideas on how this might work are very welcome! :)
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CURRENT RESEARCH

» Are there general methods for calculating wt z(v) forv € V?
> Are there general methods for obtaining sphere sizes |{v € V| wtz(v) = t}| for t € N?
» Approach?: using poset lattice of projective metrics, where wtr < wtg iff ¥ C G

WtDis

wtr

WiF\{o;}  WEF\{oy} WEE oy}

Ideas on how this might work are very welcome! :)
Let me know if you know more projective metrics!
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