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MOTIVATION

I Introduced by Gabidulin and Simonis (1997)

I A generalization of many metrics in coding theory

I Related to (projective) finite geometry, combinatorics, matroids, graph theory, etc.

I Potential applications for the theory of coset leaders, code-based cryptography

I Elementary, but it’s possibly a new perspective on known familiar concepts

I Sweet-spot for research on metrics?
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Stongly regular Clebsch graph / Greenwood–Gleason graph
An edge is a Hamming error or the all-bits-flip error
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Vertices: vectors of F4
2

An edge is a Hamming error or the all-bits-flip error
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Distance from 0000 to 1101:

red: 3, blue: 2
An edge is a Hamming error or the all-bits-flip error
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Graph distance on Clebsch graph = Phase-rotation metric/distance on F4
2

An edge is a Hamming error or the all-bits-flip error
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Hamming metric (
0 1 0 0 1 0 1

)
→ wtHamming = 3

Rank metric  0 1 0
1 1 0
1 1 1

 → wtRank = 3

Sum-Rank metric 0 1 0 0 1 0 1 0 1
1 1 0 0 0 0 1 0 1
1 1 1 0 1 0 0 0 0

 → wtSum-rank = 3 + 1 + 2 = 6

Cover metric (rows and columns)
0 1 0 0 0
0 1 0 1 1
0 1 0 0 0
1 0 0 1 0

 → wtCover = 3

Phase-rotation metric(
1 1 0 1

)
=
(

1 1 1 1
)
+
(

0 0 1 0
)
→ wtPhase-Rot = 1 + 1 = 2
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Phase-rotation metric

More: burst metric, tensor metric, combinatorical metrics, etc.
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PROJECTIVE METRICS

Let V be a vector space over finite field Fq.

Translation invariant metric/distance function d(·, ·) on V satisfies

d(x, y) = d(0, y− x) = wt(y− x)

for some weight function wt(·) : V → N≥0.

Definition
A translation invariant metric is projective iff for every x ∈ V:

wt(x) = min{t ∈ N≥0 | x is an Fq-linear combination of t vectors of weight 1}

The set of 1-dim subspaces (projective points)

F = { 〈fi〉 | fi ∈ V, wt(fi) = 1}

is called the spanning family.
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PROJECTIVE METRICS

Other direction:

Let F be a set of 1-dim subspaces (projective points)

F = { 〈f1〉, 〈f2〉, . . . , 〈fN〉}

such that 〈f1, f2, . . . , fN〉 = V.

The projective weight function wtF (·) : V → N≥0 corresponding to F is

wtF (x) := min{t ∈ N≥0 | x is in the linear span of t projective points 〈fi〉 ∈ F}

The projective metric dF (·, ·) : V × V → N≥0 corresponding to F is

dF (x, y) := wtF (y− x).
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Hamming metric(
0 1 0 0 1 0 1

)

→ F = {spans of standard basis vectors}

Rank metric  0 1 0
1 1 0
1 1 1



→ F = {spans of rank 1 matrices}

Sum-Rank metric 0 1 0 0 1 0 1 0 1
1 1 0 0 0 0 1 0 1
1 1 1 0 1 0 0 0 0



→ F =
{

spans of
(

some 0 blocks
∣∣ rank 1 matrix

∣∣ some 0 blocks
)}

Cover metric (rows and columns)
0 1 0 0 0
0 1 0 1 1
0 1 0 0 0
1 0 0 1 0



→ F = {spans of matrices with 1 non-zero row or 1 non-zero column}

Phase-rotation metric(
1 1 0 1

)
=
(

1 1 1 1
)
+
(

0 0 1 0
)

→ F = {spans of standard basis vectors or all-1}
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 → F = {spans of matrices with 1 non-zero row or 1 non-zero column}

Phase-rotation metric(
1 1 0 1

)
=
(

1 1 1 1
)
+
(

0 0 1 0
)

→ F = {spans of standard basis vectors or all-1}
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Equivalent notions of wtF (·) in different contexts:

I Coding theory:
Certain code C (depends on F); wtF (v) is Hamming weight of the coset (v + C).

I Graph theory:
Cayley graph of Fn

q with generating set F ; wtF (v) is graph distance between v and 0.

I Projective geometry:
Flats spanned by points in F ; wtF (v) is smallest rank of such a flat that contains v.

I Matroids:
• wtF (v) is cardinality of smallest subset of F whose closure contains v.

• View F as ground set of representable matroid, study dependent and independent sets.

Q: General ways to calculate wtF (v)?
Q: For fixed t, how many v have wtF (v) = t?

I Please let me know if you know a (partial) answer in any of these contexts! :)
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WHAT CAN WE DO?

Singleton-type bound!

Let V be an n-dim vector space over Fq. Let F be a spanning family for a projective metric.

Definition
Let t ∈ {0, 1, 2, . . . ,n}. We define µF (t) as the maximum cardinality of a subset G ⊆ F satisfying

1. All fi ∈ G are linear independent from each other over Fq;
2. All v ∈ 〈G〉 have wtF (v) ≤ t.

Theorem (General Singleton-type bound)

(S. 202?) Let C ⊆ V be a subset and let d = min{dF (x, y) | x 6= y ∈ C)}. Then

|C| ≤ qn−µF (d−1) ≤ qn−d+1

Coincides with Singleton bounds for specific projective metrics!
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WHAT CAN WE DO?

Constructions/operations!

We can define
wtF ∪wtG := wtF ∪G

and
wtF ⊗wtG := wtF ⊗G

where F ⊗G := {〈fi〉 ⊗ 〈gi〉 | 〈fi〉 ∈ F , 〈gi〉 ∈ G}

Example
Let F = {all 1-dim subspaces of V}. Then wtF (x) = 1 for all x 6= 0. This is the discrete weight wtDis.

Examples

I wtDis⊗wtDis = wtRank

I wtH⊗wtRank = wtSum-rank

I wtDis⊗wtH = wtRow

I wtH⊗wtDis = wtColumn

I wtRow ∪wtColumn = wtCover
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CURRENT RESEARCH

I Are there general methods for calculating wtF (v) for v ∈ V?
I Are there general methods for obtaining sphere sizes |{v ∈ V | wtF (v) = t}| for t ∈ N?
I Approach?: using poset lattice of projective metrics, where wtF 4 wtG iff F ⊆ G

wtDis

... ... ... ... ......

wtF

wtF \{v1} wtF \{v2}
... wtF \{vN}

... ... ... ...

Ideas on how this might work are very welcome! :)
Let me know if you know more projective metrics!
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