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Motivation

Recall. q - binomial coefficients (Gaussian binomial
coefficients)(

n

k

)
q

=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
=

[n]q!

[k]q! [n − k]q!

= the number of k-dimensional subspaces of Fn
q.

For example, if q = 3, n = 3, and k = 2,

the number of 2-dimensional subspaces of F3
3 is(

3

2

)
3

=
(33 − 1)(33 − 3)

(32 − 1)(32 − 3)
= 13.
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Lines in 2-space
p1 {⟨(1, 0, 0)⟩ , ⟨(0, 1, 1)⟩ , ⟨(1, 1, 1)⟩ , ⟨(1, 2, 2)⟩}
p2 {⟨(1, 0, 0)⟩ , ⟨(0, 1, 2)⟩ , ⟨(1, 1, 2)⟩ , ⟨(1, 2, 1)⟩}
p3 {⟨(0, 1, 0)⟩ , ⟨(1, 0, 1)⟩ , ⟨(1, 1, 1)⟩ , ⟨(1, 2, 1)⟩}
p4 {⟨(0, 1, 0)⟩ , ⟨(1, 0, 2)⟩ , ⟨(1, 1, 2)⟩ , ⟨(1, 2, 2)⟩}
p5 {⟨(0, 0, 1)⟩ , ⟨(1, 1, 0)⟩ , ⟨(1, 1, 1)⟩ , ⟨(1, 1, 2)⟩}
p6 {⟨(0, 0, 1)⟩ , ⟨(1, 2, 0)⟩ , ⟨(1, 2, 1)⟩ , ⟨(1, 2, 2)⟩}
p7 {⟨(1, 0, 0)⟩ , ⟨(0, 1, 0)⟩ , ⟨(1, 1, 0)⟩ , ⟨(1, 2, 0)⟩}
p8 {⟨(1, 0, 0)⟩ , ⟨(0, 0, 1)⟩ , ⟨(1, 0, 1)⟩ , ⟨(1, 0, 2)⟩}
p9 {⟨(0, 1, 0)⟩ , ⟨(0, 0, 1)⟩ , ⟨(0, 1, 1)⟩ , ⟨(0, 1, 2)⟩}
p10 {⟨(1, 0, 1)⟩ , ⟨(0, 1, 1)⟩ , ⟨(1, 2, 0)⟩ , ⟨(1, 1, 2)⟩}
p11 {⟨(1, 0, 1)⟩ , ⟨(1, 1, 0)⟩ , ⟨(0, 1, 2)⟩ , ⟨(1, 2, 2)⟩}
p12 {⟨(1, 1, 0)⟩ , ⟨(0, 1, 1)⟩ , ⟨(1, 0, 2)⟩ , ⟨(1, 2, 1)⟩}
p13 {⟨(0, 1, 2)⟩ , ⟨(1, 0, 2)⟩ , ⟨(1, 2, 0)⟩ , ⟨(1, 1, 1)⟩}

Table: The description of all 2-dimensional subspaces of F3
3.

Q. Can we always find an orthonormal basis in pi?
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An inner product on V over R is a bilinear map
⟨·, ·⟩ : V × V −→ R such that

1 ⟨v ,w⟩ = ⟨w , v⟩
2 ⟨v , v⟩ ≥ 0, = holds ⇔ v = 0.

Simply, ⟨·, ·⟩ is a positive-definite symmetric bilinear form.

But we don’t have positiveness and negativeness in F3!

⇓

Consider a symmetric bilinear form, called a quadratic form.

R ⇒ F3.
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Consider B(x , y) = x · y . Then B is a quadratic form on F3
3.

{v ,w} is an orthonormal basis of (F3
3,B) if B(v ,w) = 0, and

B(v , v) = B(w ,w) = 1, v ̸= w .

Lines in 2-space ∃ ON basis?

p1 {⟨(1, 0, 0)⟩ , ⟨(0, 1, 1)⟩ , ⟨(1, 1, 1)⟩ , ⟨(1, 2, 2)⟩} No

p2 {⟨(1, 0, 0)⟩ , ⟨(0, 1, 2)⟩ , ⟨(1, 1, 2)⟩ , ⟨(1, 2, 1)⟩} No

p3 {⟨(0, 1, 0)⟩ , ⟨(1, 0, 1)⟩ , ⟨(1, 1, 1)⟩ , ⟨(1, 2, 1)⟩} No

p4 {⟨(0, 1, 0)⟩ , ⟨(1, 0, 2)⟩ , ⟨(1, 1, 2)⟩ , ⟨(1, 2, 2)⟩} No

p5 {⟨(0, 0, 1)⟩ , ⟨(1, 1, 0)⟩ , ⟨(1, 1, 1)⟩ , ⟨(1, 1, 2)⟩} No

p6 {⟨(0, 0, 1)⟩ , ⟨(1, 2, 0)⟩ , ⟨(1, 2, 1)⟩ , ⟨(1, 2, 2)⟩} No

p7 {⟨(1, 0, 0)⟩ , ⟨(0, 1, 0)⟩ , ⟨(1, 1, 0)⟩ , ⟨(1, 2, 0)⟩} Yes

p8 {⟨(1, 0, 0)⟩ , ⟨(0, 0, 1)⟩ , ⟨(1, 0, 1)⟩ , ⟨(1, 0, 2)⟩} Yes

p9 {⟨(0, 1, 0)⟩ , ⟨(0, 0, 1)⟩ , ⟨(0, 1, 1)⟩ , ⟨(0, 1, 2)⟩} Yes

p10 {⟨(1, 0, 1)⟩ , ⟨(0, 1, 1)⟩ , ⟨(1, 2, 0)⟩ , ⟨(1, 1, 2)⟩} No

p11 {⟨(1, 0, 1)⟩ , ⟨(1, 1, 0)⟩ , ⟨(0, 1, 2)⟩ , ⟨(1, 2, 2)⟩} No

p12 {⟨(1, 1, 0)⟩ , ⟨(0, 1, 1)⟩ , ⟨(1, 0, 2)⟩ , ⟨(1, 2, 1)⟩} No

p13 {⟨(0, 1, 2)⟩ , ⟨(1, 0, 2)⟩ , ⟨(1, 2, 0)⟩ , ⟨(1, 1, 1)⟩} No
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Goal:

Introduce a formula to count the number of k-dimensional
subspaces of Fn

q which have an ON basis, where q is a prime
power, char(q)̸= 2.

This can be written by an analogue of binomial coefficient,(n
k

)⊥
q
,

Study its related combinatorial properties,

Compare it with the q-binomial coefficient.

One application
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k

)⊥
q

5 An application
Clique-free pseudorandom graphs
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The theory of quadratic forms

Theorem

Any non-degenerate quadratic form over Fq is equivalent to one of

Eucn := x21 + · · ·+ x2n−1 + x2n or Lorn := x21 + · · ·+ x2n−1 + λx2n

for some non-square λ ∈ Fq.

cf. The classification from finite geometers.

hyperbolic : kH if n = 2k and H is the hyperbolic plane,

elliptic : (k − 1)H⊕ (x2 − λy2) if n = 2k, λ is a non-square,

parabolic : kH⊕ cx2 if n = 2k + 1, c is 1 or a non-square .

Corollary

Two non-degenerate quadratic forms over a finite field are
equivalent iff they have the same dimension and same discriminant.
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The theory of quadratic forms

Definition

Let us call a k-dimensional quadratic subspace W ⊂ (Fn
q,Eucn) a

Euclidean k-subspace (or Lorentzian k-subspace) if (W ,Eucn|W )
is isometrically isomorphic to (Fk

q ,Euck) (or (Fk
q ,Lork)).

For a k-dimensional W in (Fn
q,Q),

(W ,Q|W ) has an ON basis ⇔ (W ,Q|W ) is a Euclidean
k-subspace.
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The theory of quadratic forms

Example. Let us consider W = ⟨(1, 0, 0), (0, 1, 1)⟩ in (F3
3,Euc3).

Then (W ,B = Euc3|W ) is a Lorentzian 2-subspace.

( ∵ e1 = (1, 0, 0), e2 = (0, 1, 1)

Euc3|W =

(
B(e1, e1) B(e1, e2)/2
B(e2, e1)/2 B(e2, e2)

)
=

(
(1, 0, 0) · (1, 0, 0) (1, 0, 0) · (0, 1, 1)/2
(0, 1, 1) · (1, 0, 0)/2 (0, 1, 1) · (0, 1, 1)

)
=

(
1 0
0 2

)
⇒ disc(Euc3|W ) = 2.)
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The theory of quadratic forms

Here is the fundamental theorem in the theory of quadratic forms
over any fields.

Theorem (Witt’s Extension Theorem)

Let X1
∼= X2, X1 = U1 ⊕ V1,X2 = U2 ⊕ V2, f : V1 −→ V2 an

isometry. Then there is an isomtery F : X1 −→ X2 such that
F |V1 = f and F (U1) = U2.

⇒ O(n, q) acts on
{
Euclidean k-subspaces of (Fn

q,Eucn)
}

transitively.

cf.

Sn acts on {k-sets of [n]} transitively.

GLn(Fq) acts on
{
k-dim’l subspaces of Fn

q

}
transitively.
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(
n
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q

Theorem (Y., 2023)

For any n and k, we define Euclidean-analogues as follows:

|Euck ,Eucn|q :=
|Euc1,Eucn|q|Euc1,Eucn−1|q · · · |Euc1,Eucn−k+1|q

|Euc1,Euck |q · · · |Euc1,Euc1|q
.

[k]⊥q := |Euc1,Euck |q,
[n]⊥q ! := [n]⊥q [n − 1]⊥q · · · [1]⊥q ,(n
k

)⊥
q
:= |Euck ,Eucn|q =

[n]⊥q !

[k]⊥q ![n−k]⊥q !
.

We call these Euclidean-analogues. In particular, we call
(n
k

)⊥
q

the Euclidean-binomial coefficient. We adopt the convention
that |Euc0,Eucn|q := 1.
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Theorem (Y., 2023)

If q ≡ 1 (mod 4) and n is odd, the the number of Euclidean lines
S, and Lorentzian lines T in (Fn

q,Eucn) are

S =
qn−1 + q

n−1
2

2
,T =

qn−1 − q
n−1
2

2
.

If n is even,

S =
qn−1 − q

n−2
2

2
,T =

qn−1 − q
n−2
2

2
.
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|Euck ,Eucn|q =
|Euc1,Eucn|q|Euc1,Eucn−1|q · · · |Euc1,Eucn−k+1|q

|Euc1,Euck |q · · · |Euc1,Euc1|q
,

|Euck , Lorn|q =
|Euc1, Lorn|q|Euc1, Lorn−1|q · · · |Euc1, Lorn−k+1|q

|Euc1,Euck |q · · · |Euc1,Euc1|q
,

|Lork ,Eucn|q =
|Lor1,Eucn|q
|Lor1, Lork |q

(
n − 1

k − 1

)⊥

q

,

|Lork , Lorn|q =
|Lor1, Lorn|q
|Lor1, Lork |q

(
n − 1

k − 1
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q
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Theorem (Y., 2023)(n
k

)⊥
q
can be written by the q-binomial coefficients. When

q ≡ 1 (mod 4), and n, k are odd,(
n

k

)⊥

q

=
1

2
q

k(n−k)
2 (q

n−k
2 + 1)

( n−1
2

k−1
2

)
q2

There are 4 cases if q ≡ 1 (mod 4),

16 cases if q ≡ 3 (mod 4).(n
k

)⊥
q
are polynomials of degree k(n − k) in 1

2Z[q].
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Theorem (Y., 2023)

|O(n, q)| = 2n [n]⊥q !.

cf. |Sn| = n! and |GL(n, q)| = qn(n−1)/2(q − 1)n [n]q!

(
n

k

)⊥

q

=
[n]⊥q !

[k]⊥q ![n − k]⊥q !
=

∣∣∣∣ O(n, q)

O(k , q)× O(n − k , q)

∣∣∣∣ .
(n
k

)⊥
q
= |Gr⊥q (n, k)| < |Grq(n, k)| =

(n
k

)
q
.

c.f. Over R, GrR(n, k) = O(n)
O(k)×O(n−k) .
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(
n
k

)
q
vs.

(
n
k

)⊥

q
(
n
k

)
vs.

(
n
k

)⊥

q

Connection: lim
q→1

(
n

k

)
q

=

(
n

k

)

Field with one element Fq (q-analogues)

object [n] = {1, 2, · · · , n} Fn
q

subobject a k set in [n] a k-dimensional subspace of Fn
q

bracket n the number of lines in Fn
q

factorial n! [n]q!

poset Bn Ln(q)

group |Sn| = n! |GL(n, q)| = qn(n−1)/2(q − 1)n [n]q!

flag flags in [n] flags in Fn
q

binomial coefficient
(n
k

)
= n!

k!(n−k)! =
∣∣∣ Sn
Sk×Sn−k

∣∣∣ (n
k

)
q
=

[n]q!
[k]q![(n−k)]q!

=

∣∣∣∣GL(n,q)(
A C
0 B

) ∣∣∣∣
connection limq→1

(n
k

)
q
=

(n
k

)
Table: Example of Field with one element analogues.

Semin Yoo Combinatorics of Euclidean spaces over finite fields



Motivation
Preliminaries

Combinatorial properties related to
(
n
k

)⊥

qComparison
An application

(
n
k

)
q
vs.

(
n
k

)⊥

q
(
n
k

)
vs.

(
n
k

)⊥

q

q-analogues Euclidean-analogues

space Fn
q (Fn

q,Eucn)

subspace a k-dimensional subspace of Fn
q a Euck -subspace of Eucn

bracket the number of lines in Fn
q the number of Euclidean lines in (Fn

q,Eucn)

factorial [n]q! [n]⊥q !

poset Ln(q) En(q)

group |GL(n, q)| = qn(n−1)/2(q − 1)n [n]q! |O(n, q)| = 2n [n]⊥q !

flag flags in Fn
q Euclidean flags in (Fn

q,Eucn)

binomial coefficient
(n
k

)
q
=

[n]q!
[k]q![(n−k)]q!

=

∣∣∣∣GL(n,q)(
A C
0 B

) ∣∣∣∣ (n
k

)⊥
q
=

[n]⊥q !

[k]⊥q ![(n−k)]⊥q !
=

∣∣∣ O(n,q)
O(k,q)×O(n−k,q)

∣∣∣
Table: The q-analogues and the Euclidean-analogues (Y., 2023).

Question.

??
(n
k

)⊥
q

(n
k

) (n
k

)
q

.
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(
n
k

)
q
vs.

(
n
k

)⊥

q
(
n
k

)
vs.

(
n
k

)⊥

q

Recall limq→1

(n
k

)
q
=

(n
k

)
gives a connection between

(n
k

)
q
and

(n
k

)
.

Question. limq→1

(n
k

)⊥
q
=?

Big Trouble:

There are 4 cases of
(n
k

)
d
when q ≡ 1 (mod 4) and 16 cases

when q ≡ 3 (mod 4).

limq→1

(n
k

)⊥
q
when q ≡ 1 (mod 4) is NOT the same with

limq→1

(n
k

)⊥
q
when q ≡ 3 (mod 4).

Solution: limq→1

(n
k

)⊥
q
when q ≡ 1 (mod 4) is the same with

limq→−1

(n
k

)⊥
q
when q ≡ 3 (mod 4).

Semin Yoo Combinatorics of Euclidean spaces over finite fields



Motivation
Preliminaries

Combinatorial properties related to
(
n
k

)⊥

qComparison
An application

(
n
k

)
q
vs.

(
n
k

)⊥

q
(
n
k

)
vs.

(
n
k

)⊥

q

Recall limq→1

(n
k

)
q
=

(n
k

)
gives a connection between

(n
k

)
q
and

(n
k

)
.

Question. limq→1

(n
k

)⊥
q
=?

Big Trouble:

There are 4 cases of
(n
k

)
d
when q ≡ 1 (mod 4) and 16 cases

when q ≡ 3 (mod 4).

limq→1

(n
k

)⊥
q
when q ≡ 1 (mod 4) is NOT the same with

limq→1

(n
k

)⊥
q
when q ≡ 3 (mod 4).

Solution: limq→1

(n
k

)⊥
q
when q ≡ 1 (mod 4) is the same with

limq→−1

(n
k

)⊥
q
when q ≡ 3 (mod 4).

Semin Yoo Combinatorics of Euclidean spaces over finite fields



Motivation
Preliminaries

Combinatorial properties related to
(
n
k

)⊥

qComparison
An application

(
n
k

)
q
vs.

(
n
k

)⊥

q
(
n
k

)
vs.

(
n
k

)⊥

q

Recall limq→1

(n
k

)
q
=

(n
k

)
gives a connection between

(n
k

)
q
and

(n
k

)
.

Question. limq→1

(n
k

)⊥
q
=?

Big Trouble:

There are 4 cases of
(n
k

)
d
when q ≡ 1 (mod 4) and 16 cases

when q ≡ 3 (mod 4).

limq→1

(n
k

)⊥
q
when q ≡ 1 (mod 4) is NOT the same with

limq→1

(n
k

)⊥
q
when q ≡ 3 (mod 4).

Solution: limq→1

(n
k

)⊥
q
when q ≡ 1 (mod 4) is the same with

limq→−1

(n
k

)⊥
q
when q ≡ 3 (mod 4).

Semin Yoo Combinatorics of Euclidean spaces over finite fields



Motivation
Preliminaries

Combinatorial properties related to
(
n
k

)⊥

qComparison
An application

(
n
k
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q
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(
n
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q
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n
k

)
vs.

(
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k
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q

Proposition (Y., 2023)

If n, k are odd,

lim
q→1

(
n

k

)⊥

q

=

(
(n − 1)/2

(k − 1)/2

)
= lim

q→−1

(
n

k

)⊥

q

.

If n, k are even,

lim
q→1

(
n

k

)⊥

q

=

(
n/2

k/2

)
= lim

q→−1

(
n

k

)⊥

q

.

If n is odd and k is even,

lim
q→1

(
n

k

)⊥

q

=

(
(n − 1)/2

k/2

)
= lim

q→−1

(
n

k

)⊥

q

.
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k
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k
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q

Definition

A set S in Z/(n + 1)Z is called symmetric if S = −S and 0 /∈ S .

Proposition (Y., 2023)

limq→±1

(n
k

)⊥
q
is the number of symmetric k-sets in Z/(n + 1)Z.

For example, if n = 8 and k = 4,

Z/9Z = {0, 1, 2, 3, 4, 5, 6, 7, 8}

⇒ |symmetric 4-sets in Z/9Z| =
(
8/2

4/2

)
=

(
4

2

)
= 6.

lim
q→1

(
8

4

)⊥

q

= lim
q→1

1

2
q8(q2 + 1)2(q2 − q + 1)(q2 + q + 1) = 6.
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Clique-free pseudorandom graphs

An application

Finding the conjectured lower bound of off-diagonal Ramsey
numbers can be replaced by constructing clique-free
pseudorandom graphs under some required conditions. (D.
Mubayi and J. Verstraete, 2019+) As t → ∞,

cs
ts−1

(logt)s−2
≤ r(s, t) ≤ c ′s

ts−1

(logt)s−2
.

A. Bishnoi, F. Inhringer, and V. Pepe (2020) constructed
clique-free pseudorandom graphs and improved the lower
bound of off-diagonal Ramsey numbers a little bit.

I found that their vertices are 1-dimensional Euclidean lines in
my language, so I generalized the vertices of the graphs.
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Clique-free pseudorandom graphs

I studied the graph Γ□(n, k , q) defined as follows:

The vertex set is the set of Euclidean k-subspaces in
(Fn

q, Lorn),

Two vertices x , y are adjacent if x ⊆ y⊥,

By the transitivity, the graph Γ□(n, k, q) is vertex-transitive.
Thus it is regular.

We know the size of the vertex set n, the degree of the graph
d , and the 2nd largest eigenvalue λ such that λ = O(

√
d) by

using an interlacing lemma.
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The results in BIP The results in my paper

ambient space (Fn
q, Lorn) (Fn

q, Lorn)

vertex set Euclidean lines Euclidean k-subspaces

number of vertices (1 + o(1))qn−1/2 (1 + o(1))qk(n−k)/2

adjacency relation x ∼ y ⇔ x ⊆ y⊥ x ∼ y ⇔ x ⊆ y⊥

graph Γ□(n, q) Γ□(n, k , q)

properties of the graph (1) vertex-transitive (1) vertex and arc-transitive
(2) K2-free for any n = 2 (2) K2-free for any k ≥ n/2
(3) Kn-free for all n ≥ 2 (3) Kl -free for all l >

[
n−1
k

]
(4) (n′, d ′, λ′)-graph (4) (n′′, d ′′, λ′′)-graph

Table: Comparison of the results in BIP with mine.

where n′ = Θ(qn−1), d ′ = Θ(qn−2), λ′ = Θ(q(n−2)/2),

n′′ = Θ(qk(n−k)), d ′′ = Θ(qk(n−2k)), λ′′ = Θ(qk(n−2k)/2).

d ′/n′ = Θ(n′−1/(n−1)) and d ′′/n′′ = Θ(n′′−k/(n−k)).
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Thank you for your attention!
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